Source code for GPy.likelihoods.binomial

# Copyright (c) 2012-2014 The GPy authors (see AUTHORS.txt)
# Licensed under the BSD 3-clause license (see LICENSE.txt)

import numpy as np
from ..util.univariate_Gaussian import std_norm_pdf, std_norm_cdf
from . import link_functions
from .likelihood import Likelihood
from scipy import special

[docs]class Binomial(Likelihood): """ Binomial likelihood .. math:: p(y_{i}|\\lambda(f_{i})) = \\lambda(f_{i})^{y_{i}}(1-f_{i})^{1-y_{i}} .. Note:: Y takes values in either {-1, 1} or {0, 1}. link function should have the domain [0, 1], e.g. probit (default) or Heaviside .. See also:: likelihood.py, for the parent class """ def __init__(self, gp_link=None): if gp_link is None: gp_link = link_functions.Probit() super(Binomial, self).__init__(gp_link, 'Binomial')
[docs] def d2logpdf_dlink2(self, inv_link_f, y, Y_metadata=None): """ Hessian at y, given inv_link_f, w.r.t inv_link_f the hessian will be 0 unless i == j i.e. second derivative logpdf at y given inverse link of f_i and inverse link of f_j w.r.t inverse link of f_i and inverse link of f_j. .. math:: \\frac{d^{2}\\ln p(y_{i}|\\lambda(f_{i}))}{d\\lambda(f)^{2}} = \\frac{-y_{i}}{\\lambda(f)^{2}} - \\frac{(N-y_{i})}{(1-\\lambda(f))^{2}} :param inv_link_f: latent variables inverse link of f. :type inv_link_f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata not used in binomial :returns: Diagonal of log hessian matrix (second derivative of log likelihood evaluated at points inverse link of f. :rtype: Nx1 array .. Note:: Will return diagonal of hessian, since every where else it is 0, as the likelihood factorizes over cases (the distribution for y_i depends only on inverse link of f_i not on inverse link of f_(j!=i) """ N = Y_metadata['trials'] np.testing.assert_array_equal(N.shape, y.shape) Ny = N-y t1 = np.zeros(y.shape) t2 = np.zeros(y.shape) t1[y>0] = -y[y>0]/np.square(inv_link_f[y>0]) t2[Ny>0] = -(Ny[Ny>0])/np.square(1.-inv_link_f[Ny>0]) return t1+t2
[docs] def d3logpdf_dlink3(self, inv_link_f, y, Y_metadata=None): """ Third order derivative log-likelihood function at y given inverse link of f w.r.t inverse link of f .. math:: \\frac{d^{2}\\ln p(y_{i}|\\lambda(f_{i}))}{d\\lambda(f)^{2}} = \\frac{2y_{i}}{\\lambda(f)^{3}} - \\frac{2(N-y_{i})}{(1-\\lambda(f))^{3}} :param inv_link_f: latent variables inverse link of f. :type inv_link_f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata not used in binomial :returns: Diagonal of log hessian matrix (second derivative of log likelihood evaluated at points inverse link of f. :rtype: Nx1 array .. Note:: Will return diagonal of hessian, since every where else it is 0, as the likelihood factorizes over cases (the distribution for y_i depends only on inverse link of f_i not on inverse link of f_(j!=i) """ N = Y_metadata['trials'] np.testing.assert_array_equal(N.shape, y.shape) #inv_link_f2 = np.square(inv_link_f) #TODO Remove. Why is this here? Ny = N-y t1 = np.zeros(y.shape) t2 = np.zeros(y.shape) t1[y>0] = 2*y[y>0]/inv_link_f[y>0]**3 t2[Ny>0] = - 2*(Ny[Ny>0])/(1.-inv_link_f[Ny>0])**3 return t1 + t2
[docs] def samples(self, gp, Y_metadata=None, **kw): """ Returns a set of samples of observations based on a given value of the latent variable. :param gp: latent variable """ orig_shape = gp.shape gp = gp.flatten() N = Y_metadata['trials'] Ysim = np.random.binomial(N, self.gp_link.transf(gp)) return Ysim.reshape(orig_shape)
[docs] def exact_inference_gradients(self, dL_dKdiag,Y_metadata=None): pass
[docs] def moments_match_ep(self,obs,tau,v,Y_metadata_i=None): """ Calculation of moments using quadrature :param obs: observed output :param tau: cavity distribution 1st natural parameter (precision) :param v: cavity distribution 2nd natural paramenter (mu*precision) """ #Compute first integral for zeroth moment. #NOTE constant np.sqrt(2*pi/tau) added at the end of the function if (isinstance(self.gp_link, link_functions.Probit) or isinstance(self.gp_link, link_functions.ScaledProbit)) and (Y_metadata_i is None or int(Y_metadata_i.get('trials', 1)) == int(1)): #Special case for probit likelihood. Can be found from Riihimaki et Vehtari 2010 if isinstance(self.gp_link, link_functions.ScaledProbit): nu = self.gp_link.nu else: nu = 1.0 nu = self.gp_link.nu mu = v/tau sigma2 = 1./tau t = np.asarray(1 + sigma2*(nu**2)) t[t<1e-20] = 1e-20 a = np.sqrt(t) z = obs*mu/a normc_z = max(self.gp_link.transf(z), 1e-20) m0 = normc_z normp_z = self.gp_link.dtransf_df(z) m1 = mu + (obs*sigma2*normp_z)/(normc_z*a) #print('tau: {}, v: {}, nu: {}, z: {}, normc_z: {}, normp_z: {}'.format(tau, v, nu.values, z, normc_z, normp_z)) m2 = sigma2 - ((sigma2**2)*normp_z)/((1./(nu**2)+sigma2)*normc_z)*(z + normp_z/(nu**2)/normc_z) #print("m0: {}, m1: {}, m2: {}".format(m0,m1,m2)) #m0a, m1a, m2a = super(Binomial, self).moments_match_ep(obs,tau,v,Y_metadata_i) #print("m0a: {}, m1a: {}, m2a: {}".format(m0a,m1a,m2a)) return m0, m1, m2 else: return super(Binomial, self).moments_match_ep(obs,tau,v,Y_metadata_i)
[docs] def variational_expectations(self, Y, m, v, gh_points=None, Y_metadata=None): if isinstance(self.gp_link, link_functions.Probit): if gh_points is None: gh_x, gh_w = self._gh_points() else: gh_x, gh_w = gh_points gh_w = gh_w / np.sqrt(np.pi) shape = m.shape C = np.atleast_1d(Y_metadata['trials']) m,v,Y, C = m.flatten(), v.flatten(), Y.flatten()[:,None], C.flatten()[:,None] X = gh_x[None,:]*np.sqrt(2.*v[:,None]) + m[:,None] p = std_norm_cdf(X) p = np.clip(p, 1e-9, 1.-1e-9) # for numerical stability N = std_norm_pdf(X) #TODO: missing nchoosek coefficient! use gammaln? F = (Y*np.log(p) + (C-Y)*np.log(1.-p)).dot(gh_w) NoverP = N/p NoverP_ = N/(1.-p) dF_dm = (Y*NoverP - (C-Y)*NoverP_).dot(gh_w) dF_dv = -0.5* ( Y*(NoverP**2 + NoverP*X) + (C-Y)*(NoverP_**2 - NoverP_*X) ).dot(gh_w) return F.reshape(*shape), dF_dm.reshape(*shape), dF_dv.reshape(*shape), None else: raise NotImplementedError