Source code for GPy.inference.latent_function_inference.expectation_propagation

# Copyright (c) 2012-2014, GPy authors (see AUTHORS.txt).
# Licensed under the BSD 3-clause license (see LICENSE.txt)
import numpy as np
from ...util.linalg import jitchol, DSYR, dtrtrs, dtrtri, pdinv, dpotrs, tdot, symmetrify
from paramz import ObsAr
from . import ExactGaussianInference, VarDTC
from ...util import diag
from .posterior import PosteriorEP as Posterior
from ...likelihoods import Gaussian
from . import LatentFunctionInference

log_2_pi = np.log(2*np.pi)


#Four wrapper classes to help modularisation of different EP versions
[docs]class marginalMoments(object): def __init__(self, num_data): self.Z_hat = np.empty(num_data,dtype=np.float64) self.mu_hat = np.empty(num_data,dtype=np.float64) self.sigma2_hat = np.empty(num_data,dtype=np.float64)
[docs]class cavityParams(object): def __init__(self, num_data): self.tau = np.empty(num_data,dtype=np.float64) self.v = np.empty(num_data,dtype=np.float64) def _update_i(self, eta, ga_approx, post_params, i): self.tau[i] = 1./post_params.Sigma_diag[i] - eta*ga_approx.tau[i] self.v[i] = post_params.mu[i]/post_params.Sigma_diag[i] - eta*ga_approx.v[i]
[docs] def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ return {"tau": self.tau.tolist(), "v": self.v.tolist()}
[docs] @staticmethod def from_dict(input_dict): c = cavityParams(len(input_dict["tau"])) c.tau = np.array(input_dict["tau"]) c.v = np.array(input_dict["v"]) return c
[docs]class gaussianApproximation(object): def __init__(self, v, tau): self.tau = tau self.v = v def _update_i(self, eta, delta, post_params, marg_moments, i): #Site parameters update delta_tau = delta/eta*(1./marg_moments.sigma2_hat[i] - 1./post_params.Sigma_diag[i]) delta_v = delta/eta*(marg_moments.mu_hat[i]/marg_moments.sigma2_hat[i] - post_params.mu[i]/post_params.Sigma_diag[i]) tau_tilde_prev = self.tau[i] self.tau[i] += delta_tau # Enforce positivity of tau_tilde. Even though this is guaranteed for logconcave sites, it is still possible # to get negative values due to numerical errors. Moreover, the value of tau_tilde should be positive in order to # update the marginal likelihood without runnint into instabilities issues. if self.tau[i] < np.finfo(float).eps: self.tau[i] = np.finfo(float).eps delta_tau = self.tau[i] - tau_tilde_prev self.v[i] += delta_v return (delta_tau, delta_v)
[docs] def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ return {"tau": self.tau.tolist(), "v": self.v.tolist()}
[docs] @staticmethod def from_dict(input_dict): return gaussianApproximation(np.array(input_dict["v"]), np.array(input_dict["tau"]))
[docs]class posteriorParamsBase(object): def __init__(self, mu, Sigma_diag): self.mu = mu self.Sigma_diag = Sigma_diag def _update_rank1(self, *arg): pass def _recompute(self, *arg): pass
[docs]class posteriorParams(posteriorParamsBase): def __init__(self, mu, Sigma, L=None): self.Sigma = Sigma self.L = L Sigma_diag = np.diag(self.Sigma) super(posteriorParams, self).__init__(mu, Sigma_diag) def _update_rank1(self, delta_tau, delta_v, ga_approx, i): si = self.Sigma[i,:].copy() ci = delta_tau/(1.+ delta_tau*si[i]) self.mu = self.mu - (ci*(self.mu[i]+si[i]*delta_v)-delta_v) * si DSYR(self.Sigma, si, -ci)
[docs] def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ #TODO: Implement a more memory efficient variant if self.L is None: return { "mu": self.mu.tolist(), "Sigma": self.Sigma.tolist()} else: return { "mu": self.mu.tolist(), "Sigma": self.Sigma.tolist(), "L": self.L.tolist()}
[docs] @staticmethod def from_dict(input_dict): if "L" in input_dict: return posteriorParams(np.array(input_dict["mu"]), np.array(input_dict["Sigma"]), np.array(input_dict["L"])) else: return posteriorParams(np.array(input_dict["mu"]), np.array(input_dict["Sigma"]))
@staticmethod def _recompute(mean_prior, K, ga_approx): num_data = len(ga_approx.tau) tau_tilde_root = np.sqrt(ga_approx.tau) Sroot_tilde_K = tau_tilde_root[:,None] * K B = np.eye(num_data) + Sroot_tilde_K * tau_tilde_root[None,:] L = jitchol(B) V, _ = dtrtrs(L, Sroot_tilde_K, lower=1) Sigma = K - np.dot(V.T,V) #K - KS^(1/2)BS^(1/2)K = (K^(-1) + \Sigma^(-1))^(-1) aux_alpha , _ = dpotrs(L, tau_tilde_root * (np.dot(K, ga_approx.v) + mean_prior), lower=1) alpha = ga_approx.v - tau_tilde_root * aux_alpha #(K + Sigma^(\tilde))^(-1) (/mu^(/tilde) - /mu_p) mu = np.dot(K, alpha) + mean_prior return posteriorParams(mu=mu, Sigma=Sigma, L=L)
[docs]class posteriorParamsDTC(posteriorParamsBase): def __init__(self, mu, Sigma_diag): super(posteriorParamsDTC, self).__init__(mu, Sigma_diag) def _update_rank1(self, LLT, Kmn, delta_v, delta_tau, i): #DSYR(Sigma, Sigma[:,i].copy(), -delta_tau/(1.+ delta_tau*Sigma[i,i])) DSYR(LLT,Kmn[:,i].copy(),delta_tau) L = jitchol(LLT) V,info = dtrtrs(L,Kmn,lower=1) self.Sigma_diag = np.maximum(np.sum(V*V,-2), np.finfo(float).eps) #diag(K_nm (L L^\top)^(-1)) K_mn si = np.sum(V.T*V[:,i],-1) #(V V^\top)[:,i] self.mu += (delta_v-delta_tau*self.mu[i])*si #mu = np.dot(Sigma, v_tilde)
[docs] def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ return { "mu": self.mu.tolist(), "Sigma_diag": self.Sigma_diag.tolist()}
[docs] @staticmethod def from_dict(input_dict): return posteriorParamsDTC(np.array(input_dict["mu"]), np.array(input_dict["Sigma_diag"]))
@staticmethod def _recompute(LLT0, Kmn, ga_approx): LLT = LLT0 + np.dot(Kmn*ga_approx.tau[None,:],Kmn.T) L = jitchol(LLT) V, _ = dtrtrs(L,Kmn,lower=1) #Sigma_diag = np.sum(V*V,-2) #Knmv_tilde = np.dot(Kmn,v_tilde) #mu = np.dot(V2.T,Knmv_tilde) Sigma = np.dot(V.T,V) mu = np.dot(Sigma, ga_approx.v) Sigma_diag = np.diag(Sigma).copy() return posteriorParamsDTC(mu, Sigma_diag), LLT
[docs]class EPBase(object): def __init__(self, epsilon=1e-6, eta=1., delta=1., always_reset=False, max_iters=np.inf, ep_mode="alternated", parallel_updates=False, loading=False): """ The expectation-propagation algorithm. For nomenclature see Rasmussen & Williams 2006. :param epsilon: Convergence criterion, maximum squared difference allowed between mean updates to stop iterations (float) :type epsilon: float :param eta: parameter for fractional EP updates. :type eta: float64 :param delta: damping EP updates factor. :type delta: float64 :param always_reset: setting to always reset the approximation at the beginning of every inference call. :type always_reest: boolean :max_iters: int :ep_mode: string. It can be "nested" (EP is run every time the Hyperparameters change) or "alternated" (It runs EP at the beginning and then optimize the Hyperparameters). :parallel_updates: boolean. If true, updates of the parameters of the sites in parallel :loading: boolean. If True, prevents the EP parameters to change. Hack used when loading a serialized model """ super(EPBase, self).__init__() self.always_reset = always_reset self.epsilon, self.eta, self.delta, self.max_iters = epsilon, eta, delta, max_iters self.ep_mode = ep_mode self.parallel_updates = parallel_updates #FIXME: Hack for serialiation. If True, prevents the EP parameters to change when loading a serialized model self.loading = loading self.reset()
[docs] def reset(self): self.ga_approx_old = None self._ep_approximation = None
[docs] def on_optimization_start(self): self._ep_approximation = None
[docs] def on_optimization_end(self): # TODO: update approximation in the end as well? Maybe even with a switch? pass
def _stop_criteria(self, ga_approx): tau_diff = np.mean(np.square(ga_approx.tau-self.ga_approx_old.tau)) v_diff = np.mean(np.square(ga_approx.v-self.ga_approx_old.v)) return ((tau_diff < self.epsilon) and (v_diff < self.epsilon)) def __setstate__(self, state): super(EPBase, self).__setstate__(state[0]) self.epsilon, self.eta, self.delta = state[1] self.reset() def __getstate__(self): return [super(EPBase, self).__getstate__() , [self.epsilon, self.eta, self.delta]] def _save_to_input_dict(self): input_dict = super(EPBase, self)._save_to_input_dict() input_dict["epsilon"]=self.epsilon input_dict["eta"]=self.eta input_dict["delta"]=self.delta input_dict["always_reset"]=self.always_reset input_dict["max_iters"]=self.max_iters input_dict["ep_mode"]=self.ep_mode input_dict["parallel_updates"]=self.parallel_updates input_dict["loading"]=True return input_dict
[docs]class EP(EPBase, ExactGaussianInference):
[docs] def inference(self, kern, X, likelihood, Y, mean_function=None, Y_metadata=None, precision=None, K=None): if self.always_reset and not self.loading: self.reset() num_data, output_dim = Y.shape assert output_dim == 1, "ep in 1D only (for now!)" if mean_function is None: mean_prior = np.zeros(X.shape[0]) else: mean_prior = mean_function.f(X).flatten() if K is None: K = kern.K(X) if self.ep_mode=="nested" and not self.loading: #Force EP at each step of the optimization self._ep_approximation = None post_params, ga_approx, cav_params, log_Z_tilde = self._ep_approximation = self.expectation_propagation(mean_prior, K, Y, likelihood, Y_metadata) elif self.ep_mode=="alternated" or self.loading: if getattr(self, '_ep_approximation', None) is None: #if we don't yet have the results of runnign EP, run EP and store the computed factors in self._ep_approximation post_params, ga_approx, cav_params, log_Z_tilde = self._ep_approximation = self.expectation_propagation(mean_prior, K, Y, likelihood, Y_metadata) else: #if we've already run EP, just use the existing approximation stored in self._ep_approximation post_params, ga_approx, cav_params, log_Z_tilde = self._ep_approximation else: raise ValueError("ep_mode value not valid") self.loading = False return self._inference(Y, mean_prior, K, ga_approx, cav_params, likelihood, Y_metadata=Y_metadata, Z_tilde=log_Z_tilde)
[docs] def expectation_propagation(self, mean_prior, K, Y, likelihood, Y_metadata): num_data, data_dim = Y.shape assert data_dim == 1, "This EP methods only works for 1D outputs" # Makes computing the sign quicker if we work with numpy arrays rather # than ObsArrays Y = Y.values.copy() #Initial values - Marginal moments, cavity params, gaussian approximation params and posterior params marg_moments = marginalMoments(num_data) cav_params = cavityParams(num_data) ga_approx, post_params = self._init_approximations(mean_prior, K, num_data) #Approximation stop = False iterations = 0 while not stop and (iterations < self.max_iters): self._local_updates(num_data, cav_params, post_params, marg_moments, ga_approx, likelihood, Y, Y_metadata) #(re) compute Sigma and mu using full Cholesky decompy post_params = posteriorParams._recompute(mean_prior, K, ga_approx) #monitor convergence if iterations > 0: stop = self._stop_criteria(ga_approx) self.ga_approx_old = gaussianApproximation(ga_approx.v.copy(), ga_approx.tau.copy()) iterations += 1 log_Z_tilde = self._log_Z_tilde(marg_moments, ga_approx, cav_params) return (post_params, ga_approx, cav_params, log_Z_tilde)
def _init_approximations(self, mean_prior, K, num_data): #initial values - Gaussian factors #Initial values - Posterior distribution parameters: q(f|X,Y) = N(f|mu,Sigma) if self.ga_approx_old is None: v_tilde, tau_tilde = np.zeros((2, num_data)) ga_approx = gaussianApproximation(v_tilde, tau_tilde) Sigma = K.copy() diag.add(Sigma, 1e-7) mu = mean_prior post_params = posteriorParams(mu, Sigma) else: assert self.ga_approx_old.v.size == num_data, "data size mis-match: did you change the data? try resetting!" ga_approx = gaussianApproximation(self.ga_approx_old.v, self.ga_approx_old.tau) post_params = posteriorParams._recompute(mean_prior, K, ga_approx) diag.add(post_params.Sigma, 1e-7) # TODO: Check the log-marginal under both conditions and choose the best one return (ga_approx, post_params) def _local_updates(self, num_data, cav_params, post_params, marg_moments, ga_approx, likelihood, Y, Y_metadata, update_order=None): if update_order is None: update_order = np.random.permutation(num_data) for i in update_order: #Cavity distribution parameters cav_params._update_i(self.eta, ga_approx, post_params, i) if Y_metadata is not None: # Pick out the relavent metadata for Yi Y_metadata_i = {} for key in Y_metadata.keys(): Y_metadata_i[key] = Y_metadata[key][i, :] else: Y_metadata_i = None #Marginal moments marg_moments.Z_hat[i], marg_moments.mu_hat[i], marg_moments.sigma2_hat[i] = likelihood.moments_match_ep(Y[i], cav_params.tau[i], cav_params.v[i], Y_metadata_i=Y_metadata_i) #Site parameters update delta_tau, delta_v = ga_approx._update_i(self.eta, self.delta, post_params, marg_moments, i) if self.parallel_updates == False: post_params._update_rank1(delta_tau, delta_v, ga_approx, i) def _log_Z_tilde(self, marg_moments, ga_approx, cav_params): # Z_tilde after removing the terms that can lead to infinite terms due to tau_tilde close to zero. # This terms cancel with the coreresponding terms in the marginal loglikelihood return np.sum(( np.log(marg_moments.Z_hat) + 0.5*np.log(2*np.pi) + 0.5*np.log(1+ga_approx.tau/cav_params.tau) - 0.5 * ((ga_approx.v)**2 * 1./(cav_params.tau + ga_approx.tau)) + 0.5*(cav_params.v * ( ( (ga_approx.tau/cav_params.tau) * cav_params.v - 2.0 * ga_approx.v ) * 1./(cav_params.tau + ga_approx.tau))) )) def _ep_marginal(self, mean_prior, K, ga_approx, Z_tilde): post_params = posteriorParams._recompute(mean_prior, K, ga_approx) # Gaussian log marginal excluding terms that can go to infinity due to arbitrarily small tau_tilde. # These terms cancel out with the terms excluded from Z_tilde B_logdet = np.sum(2.0*np.log(np.diag(post_params.L))) S_mean_prior = ga_approx.tau * mean_prior v_centered = ga_approx.v - S_mean_prior log_marginal = 0.5*( -len(ga_approx.tau) * log_2_pi - B_logdet + np.sum(v_centered * np.dot(post_params.Sigma, v_centered)) - np.dot(mean_prior, (S_mean_prior - 2*ga_approx.v)) ) log_marginal += Z_tilde return log_marginal, post_params def _inference(self, Y, mean_prior, K, ga_approx, cav_params, likelihood, Z_tilde, Y_metadata=None): log_marginal, post_params = self._ep_marginal(mean_prior, K, ga_approx, Z_tilde) tau_tilde_root = np.sqrt(ga_approx.tau) Sroot_tilde_K = tau_tilde_root[:,None] * K aux_alpha , _ = dpotrs(post_params.L, tau_tilde_root * (np.dot(K, ga_approx.v) + mean_prior), lower=1) alpha = (ga_approx.v - tau_tilde_root * aux_alpha)[:,None] #(K + Sigma^(\tilde))^(-1) (/mu^(/tilde) - /mu_p) LWi, _ = dtrtrs(post_params.L, np.diag(tau_tilde_root), lower=1) Wi = np.dot(LWi.T,LWi) symmetrify(Wi) #(K + Sigma^(\tilde))^(-1) dL_dK = 0.5 * (tdot(alpha) - Wi) dL_dthetaL = likelihood.ep_gradients(Y, cav_params.tau, cav_params.v, np.diag(dL_dK), Y_metadata=Y_metadata, quad_mode='gh') return Posterior(woodbury_inv=Wi, woodbury_vector=alpha, K=K), log_marginal, {'dL_dK':dL_dK, 'dL_dthetaL':dL_dthetaL, 'dL_dm':alpha}
[docs] def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ input_dict = super(EP, self)._save_to_input_dict() input_dict["class"] = "GPy.inference.latent_function_inference.expectation_propagation.EP" if self.ga_approx_old is not None: input_dict["ga_approx_old"] = self.ga_approx_old.to_dict() if self._ep_approximation is not None: input_dict["_ep_approximation"] = {} input_dict["_ep_approximation"]["post_params"] = self._ep_approximation[0].to_dict() input_dict["_ep_approximation"]["ga_approx"] = self._ep_approximation[1].to_dict() input_dict["_ep_approximation"]["cav_params"] = self._ep_approximation[2].to_dict() input_dict["_ep_approximation"]["log_Z_tilde"] = self._ep_approximation[3].tolist() return input_dict
@staticmethod def _build_from_input_dict(inference_class, input_dict): ga_approx_old = input_dict.pop('ga_approx_old', None) if ga_approx_old is not None: ga_approx_old = gaussianApproximation.from_dict(ga_approx_old) _ep_approximation_dict = input_dict.pop('_ep_approximation', None) _ep_approximation = [] if _ep_approximation is not None: _ep_approximation.append(posteriorParams.from_dict(_ep_approximation_dict["post_params"])) _ep_approximation.append(gaussianApproximation.from_dict(_ep_approximation_dict["ga_approx"])) _ep_approximation.append(cavityParams.from_dict(_ep_approximation_dict["cav_params"])) _ep_approximation.append(np.array(_ep_approximation_dict["log_Z_tilde"])) ee = EP(**input_dict) ee.ga_approx_old = ga_approx_old ee._ep_approximation = _ep_approximation return ee
[docs]class EPDTC(EPBase, VarDTC):
[docs] def inference(self, kern, X, Z, likelihood, Y, mean_function=None, Y_metadata=None, Lm=None, dL_dKmm=None, psi0=None, psi1=None, psi2=None): if self.always_reset and not self.loading: self.reset() num_data, output_dim = Y.shape assert output_dim == 1, "ep in 1D only (for now!)" if Lm is None: Kmm = kern.K(Z) Lm = jitchol(Kmm) if psi1 is None: try: Kmn = kern.K(Z, X) except TypeError: Kmn = kern.psi1(Z, X).T else: Kmn = psi1.T if self.ep_mode=="nested" and not self.loading: #Force EP at each step of the optimization self._ep_approximation = None post_params, ga_approx, log_Z_tilde = self._ep_approximation = self.expectation_propagation(Kmm, Kmn, Y, likelihood, Y_metadata) elif self.ep_mode=="alternated" or self.loading: if getattr(self, '_ep_approximation', None) is None: #if we don't yet have the results of runnign EP, run EP and store the computed factors in self._ep_approximation post_params, ga_approx, log_Z_tilde = self._ep_approximation = self.expectation_propagation(Kmm, Kmn, Y, likelihood, Y_metadata) else: #if we've already run EP, just use the existing approximation stored in self._ep_approximation post_params, ga_approx, log_Z_tilde = self._ep_approximation else: raise ValueError("ep_mode value not valid") self.loading = False mu_tilde = ga_approx.v / ga_approx.tau.astype(float) return super(EPDTC, self).inference(kern, X, Z, likelihood, ObsAr(mu_tilde[:,None]), mean_function=mean_function, Y_metadata=Y_metadata, precision=ga_approx.tau, Lm=Lm, dL_dKmm=dL_dKmm, psi0=psi0, psi1=psi1, psi2=psi2, Z_tilde=log_Z_tilde)
[docs] def expectation_propagation(self, Kmm, Kmn, Y, likelihood, Y_metadata): num_data, output_dim = Y.shape assert output_dim == 1, "This EP methods only works for 1D outputs" # Makes computing the sign quicker if we work with numpy arrays rather # than ObsArrays Y = Y.values.copy() #Initial values - Marginal moments, cavity params, gaussian approximation params and posterior params marg_moments = marginalMoments(num_data) cav_params = cavityParams(num_data) ga_approx, post_params, LLT0, LLT = self._init_approximations(Kmm, Kmn, num_data) #Approximation stop = False iterations = 0 while not stop and (iterations < self.max_iters): self._local_updates(num_data, LLT0, LLT, Kmn, cav_params, post_params, marg_moments, ga_approx, likelihood, Y, Y_metadata) #(re) compute Sigma, Sigma_diag and mu using full Cholesky decompy post_params, LLT = posteriorParamsDTC._recompute(LLT0, Kmn, ga_approx) post_params.Sigma_diag = np.maximum(post_params.Sigma_diag, np.finfo(float).eps) #monitor convergence if iterations > 0: stop = self._stop_criteria(ga_approx) self.ga_approx_old = gaussianApproximation(ga_approx.v.copy(), ga_approx.tau.copy()) iterations += 1 log_Z_tilde = self._log_Z_tilde(marg_moments, ga_approx, cav_params) return post_params, ga_approx, log_Z_tilde
def _log_Z_tilde(self, marg_moments, ga_approx, cav_params): mu_tilde = ga_approx.v/ga_approx.tau mu_cav = cav_params.v/cav_params.tau sigma2_sigma2tilde = 1./cav_params.tau + 1./ga_approx.tau return np.sum((np.log(marg_moments.Z_hat) + 0.5*np.log(2*np.pi) + 0.5*np.log(sigma2_sigma2tilde) + 0.5*((mu_cav - mu_tilde)**2) / (sigma2_sigma2tilde))) def _init_approximations(self, Kmm, Kmn, num_data): #initial values - Gaussian factors #Initial values - Posterior distribution parameters: q(f|X,Y) = N(f|mu,Sigma) LLT0 = Kmm.copy() Lm = jitchol(LLT0) #K_m = L_m L_m^\top Vm,info = dtrtrs(Lm, Kmn,lower=1) # Lmi = dtrtri(Lm) # Kmmi = np.dot(Lmi.T,Lmi) # KmmiKmn = np.dot(Kmmi,Kmn) # Qnn_diag = np.sum(Kmn*KmmiKmn,-2) Qnn_diag = np.sum(Vm*Vm,-2) #diag(Knm Kmm^(-1) Kmn) #diag.add(LLT0, 1e-8) if self.ga_approx_old is None: #Initial values - Posterior distribution parameters: q(f|X,Y) = N(f|mu,Sigma) LLT = LLT0.copy() #Sigma = K.copy() mu = np.zeros(num_data) Sigma_diag = Qnn_diag.copy() + 1e-8 v_tilde, tau_tilde = np.zeros((2, num_data)) ga_approx = gaussianApproximation(v_tilde, tau_tilde) post_params = posteriorParamsDTC(mu, Sigma_diag) else: assert self.ga_approx_old.v.size == num_data, "data size mis-match: did you change the data? try resetting!" ga_approx = gaussianApproximation(self.ga_approx_old.v, self.ga_approx_old.tau) post_params, LLT = posteriorParamsDTC._recompute(LLT0, Kmn, ga_approx) post_params.Sigma_diag += 1e-8 # TODO: Check the log-marginal under both conditions and choose the best one return (ga_approx, post_params, LLT0, LLT) def _local_updates(self, num_data, LLT0, LLT, Kmn, cav_params, post_params, marg_moments, ga_approx, likelihood, Y, Y_metadata, update_order=None): if update_order is None: update_order = np.random.permutation(num_data) for i in update_order: #Cavity distribution parameters cav_params._update_i(self.eta, ga_approx, post_params, i) if Y_metadata is not None: # Pick out the relavent metadata for Yi Y_metadata_i = {} for key in Y_metadata.keys(): Y_metadata_i[key] = Y_metadata[key][i, :] else: Y_metadata_i = None #Marginal moments marg_moments.Z_hat[i], marg_moments.mu_hat[i], marg_moments.sigma2_hat[i] = likelihood.moments_match_ep(Y[i], cav_params.tau[i], cav_params.v[i], Y_metadata_i=Y_metadata_i) #Site parameters update delta_tau, delta_v = ga_approx._update_i(self.eta, self.delta, post_params, marg_moments, i) #Posterior distribution parameters update if self.parallel_updates == False: post_params._update_rank1(LLT, Kmn, delta_v, delta_tau, i)
[docs] def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ input_dict = super(EPDTC, self)._save_to_input_dict() input_dict["class"] = "GPy.inference.latent_function_inference.expectation_propagation.EPDTC" if self.ga_approx_old is not None: input_dict["ga_approx_old"] = self.ga_approx_old.to_dict() if self._ep_approximation is not None: input_dict["_ep_approximation"] = {} input_dict["_ep_approximation"]["post_params"] = self._ep_approximation[0].to_dict() input_dict["_ep_approximation"]["ga_approx"] = self._ep_approximation[1].to_dict() input_dict["_ep_approximation"]["log_Z_tilde"] = self._ep_approximation[2] return input_dict
@staticmethod def _build_from_input_dict(inference_class, input_dict): ga_approx_old = input_dict.pop('ga_approx_old', None) if ga_approx_old is not None: ga_approx_old = gaussianApproximation.from_dict(ga_approx_old) _ep_approximation_dict = input_dict.pop('_ep_approximation', None) _ep_approximation = [] if _ep_approximation is not None: _ep_approximation.append(posteriorParamsDTC.from_dict(_ep_approximation_dict["post_params"])) _ep_approximation.append(gaussianApproximation.from_dict(_ep_approximation_dict["ga_approx"])) _ep_approximation.append(_ep_approximation_dict["log_Z_tilde"]) ee = EPDTC(**input_dict) ee.ga_approx_old = ga_approx_old ee._ep_approximation = _ep_approximation return ee